Analytical Solution of a Nonlinear ODE via Lie Groups
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Case of Nonlinear First-Order ODEs

Example. Find the analytical solution of the following ODE:
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dx Y+ x + xy (1)

Let us consider a more general form like

where F': R? — R is arbitrary.

We first propose the following infinitesimal transformations under which Eq. is to be invariant.
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Following Lie’s invariance condition, the infinitesimals X and Y must satisfy
8Y+ Y 0X P 8XF2_X3F+Y8F .
ot oy o) T e = N ey )

As soon as we find the aforementioned infinitesimals, the variable change

(z,y) = (r(z,9),s(z,y)), (6)

transforms Eq. into a separable ODE.
For this purpose, the following equations must hold true.
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Back to Eq. , we nominate the following forms for the infinitesimals:
X = A(z), (9)

and
Y = yB(x). (10)

In view of Eq. , it follows that
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which simplifies to
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If we select A(x) = z, then Eq. reduces to
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It is not difficult to see that B(z) = z? satisfies Eq. (L3).
Hence, we have so far identified the infinitesimals as X (z,y) = z and Y (x,y) = x?y. Substituting
the found infinitesimals into Eq. , it yields that
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To solve Eq. easily, let us assume s = s(z). Therefore,

sy 15
x% -5 ( )
which means
s=In(z)+c. (16)
On the other hand, Eq. leads to
or , Or
— —=0. 17
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Next, inspired from the separation of variables method, we propose the form r(z,y) = a(z)b(y)
and thus,

xb% + nya@ =0 (18)
dx dy
or alternatively,
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where A must be a constant (independent of x and y). Consequently,
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In addition,
da Az?
— = AXzdx - a=cgexp | — |. (21)
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Altogether, it yields that
a0 Az?
T =C4Yy exp 7 . (22)
For simplicity, we take ¢4 = 1, ¢; = 0, and A = 2. Therefore, our intended variable transformations
is
s = In(x),
1 (23)
r= ?er

Lastly, we will rewrite Eq. in terms of s and r. In the first step, Eq. becomes

dy dx dy
— =xdr + —+ —dx — — = zdx + ds + rds. (24)
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From Eq., we can write that
, dr dy dy ldr
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As a result,
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Note that Eq. is a separable ODE and can be integrated to obtain
1 1
5:§ln 1+; + cs. (27)

Thus, we conclude the analytical solution to Eq. as
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where k is an arbitrary constant.
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