Differential Distillation

Home -> Solved Problems -> Mass Transfer ->

100 moles of Benzene (A) and Toluene mixture containing 50% (mole) of Benzene is subjected to a differential distillation at atmospheric pressure till the composition of benzene in the residue is 33%. Calculate the total moles of the mixture distilled. Average relative volatility may be assumed as 2.16

Calculations:

For system of constant relative volatility, the following equation is obtained after the simplification of Rayleigh's equation for differential distillation:

$$\ln \frac{F}{W} = \frac{1}{\alpha - 1} \ln \frac{x_F(1 - x_W)}{x_W(1 - x_F)} + \ln \frac{1 - x_W}{1 - x_F}$$

In the above equation, F is feed; W is residue; x_F is composition of feed; x_W is composition of residue; and α is relative volatility.

Given:
$$x_F = 0.5$$
; $x_W = 0.33$; $F = 100$; $\alpha = 2.16$

Substituting these in the above equation,

$$\ln (100/W) = (1/1.16) \times \ln \{[(0.5(1 - 0.33)]/[(0.33(1 - 0.5)]\} + \ln [(1 - 0.33)/(1 - 0.5)]$$

$$ln (100/W) = 0.862 \times ln (2.03) + ln (1.34)$$

$$ln (100/W) = 0.862 \times 0.708 + 0.2927$$

$$ln (100/W) = 0.903$$

$$100/W = e^{0.903}$$

$$100/W = 2.467$$

$$W = 100/2.467 = 40.54 \text{ mole}$$

Moles of mixture distilled = F - W = 100 - 40.54 = 59.46

The above can also be obtained by using the general form of Rayleigh's equation and by graphical method. This is given below.

The equilibrium curve relationship is given by

$$y^* = \alpha x/(1 + x(\alpha - 1)) = 2.16x/(1 + 1.16x) \rightarrow 1$$

For differential distillation, the following Rayleigh's equation is applicable:

$$\ln \frac{F}{W} = \int_{x_W}^{x_F} \frac{dx}{y^* - x}$$

By using Equn.1 the following equilibrium data is obtained: (for the region of x = 0.33 to 0.5)

X	<i>y</i> *
0.33	0.515
0.36	0.549
0.39	0.580
0.42	0.610
0.45	0.639
0.48	0.666
0.5	0.684

For the above data the following table of x Vs.1/(y* - x) is obtained:

×	1/(y* - x)
0.33	5.392
0.36	5.304
0.39	5.263
0.42	5.263
0.45	5.301
0.48	5.377
0.5	5.448

Using the above data a graph of x Vs.1/(y^* - x) is drawn between the limits of x = 0.33 to 0.5.

Number of small squares under the curve between x = 0.33 and 0.5 = 904Therefore, area under the curve = $904 \times 0.01 \times 0.1 = 0.904$

Area under the curve between the limits of x = 0.33 to 0.5, is = 0.904

i.e.,

ln (F/W) = 0.904

 $e^{0.904} = F/W$

2.4695 = F/W

Given F = 100 moles. Therefore,

W = 100 / 2.4695 = 40.5 mole.

Therefore, moles of mixture distilled = F - W = 100 - 40.5 = 59.5

HOME

Last Modified on: 11-Sep-2014

Chemical Engineering Learning Resources - msubbu e-mail: msubbu.in[AT]gmail.com
Web: http://www.msubbu.in