Hooman Fatoorehchi
Assistant Professor
School of Chemical Engineering
University of Tehran, Tehran, Iran

Formulas in this page are typed in $\LaTeX$.

The Peng-Robinson Equation of State

Original references:
[1] Ding-Yu Peng and Donald B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals, 15(1) (1976) 59-64. DOI: 10.1021/i160057a011
[2] Donald B. Robinson, Ding-Yu Peng, The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. Gas Processors Association, 1978.

Pressure-explicit form

$ P=\frac{RT}{v-b}-\frac{a}{v^2+2bv-b^2} $

$ b=0.07780 \frac{R\hspace{0.1cm}T_c}{P_c} $

$ a=0.45724 \frac{R^2 T_c^2}{P_c} \left[1+f_{\omega}\left(1-\sqrt{T_r}\hspace{0.1cm} \right)\right]^2 $

$\omega < 0.49: f_{\omega}=0.37464+1.54226\hspace{0.1cm}\omega-0.26992\hspace{0.1cm}\omega^2$
$\omega \ge 0.49: f_{\omega}=0.379642+1.48503\hspace{0.1cm}\omega-0.164423\hspace{0.1cm}\omega^2+0.016666\hspace{0.1cm}\omega^3$ → This is from Ref [2]

$R=8.31446261815324 \frac{J}{mol\hspace{0.1cm} K}$
$ T_r=\frac{T}{T_c}$
Units to be used: $P\left[=\right]$ Pa, $\hspace{0.1cm}T\left[=\right]$ K, $\hspace{0.1cm}v\left[=\right]\frac{m^3}{mol}$

Represented in terms of compressibility factor

$ z^3-\left(1-B\right)z^2 +\left( A-3B^2-2B\right)z-\left( AB-B^2-B^3\right)=0 $

$ A=\frac{a\hspace{0.1cm}P}{R^2\hspace{0.1cm}T^2} $

$ B=\frac{b\hspace{0.1cm}P}{R\hspace{0.1cm}T} $

Fugacity (of pure component) based on the P-R EOS

$ \ln{\frac{f}{P}}=z-1-\ln{\left(z-B \right)}-\frac{A}{2\sqrt{2}\hspace{0.1cm}B} \ln{\left( \frac{z+\left(1+\sqrt{2}\hspace{0.1cm}\right)B}{z+\left(1-\sqrt{2}\hspace{0.1cm}\right)B} \right)} $

Enthalpy departure function based on the P-R EOS

$ h-h^{idl}=RT\left[ z-1 -\frac{A}{2\sqrt{2}\hspace{0.1cm}B} \left(1+\frac{f_{\omega}\hspace{0.1cm}\sqrt{T_r}}{1+f_{\omega}\left(1-\sqrt{T_r}\hspace{0.1cm} \right)} \hspace{0.1cm} \right) \ln{\left( \frac{z+\left(1+\sqrt{2}\hspace{0.1cm}\right)B}{z+\left(1-\sqrt{2}\hspace{0.1cm}\right)B} \right)} \right] $

Entropy departure function based on the P-R EOS

$ s-s^{idl}=R \ln{\left( z-B \right) } - \frac{A \hspace{0.1cm} R}{2\sqrt{2}\hspace{0.1cm}B} \frac{f_{\omega}\hspace{0.1cm} \sqrt{T_r}}{1+f_{\omega}\left(1-\sqrt{T_r}\hspace{0.1cm} \right)} \ln{\left( \frac{z+\left(1+\sqrt{2}\hspace{0.1cm}\right)B}{z+\left(1-\sqrt{2}\hspace{0.1cm}\right)B} \right)} $

Mixture parameters

$ a=\sum \sum y_i y_j \left( 1- \delta_{ij} \right) \sqrt{a_i} \sqrt{a_j} $
$ b=\sum y_i b_i $

Note that the $\delta_{ij}$ are empirically determined binary interaction coefficients.

Fugacity coefficient of component k in a mixture

$ \ln{\hat{\phi_k}}=\ln{\left( \frac{\hat{f_k}}{y_k P} \right)} =\frac{b_k}{b}\left(z-1 \right)-\ln{\left( z-B \right)}-\frac{A}{2\sqrt{2}\hspace{0.1cm}B}\left( \frac{2\sum_i{y_i a_{ik}}}{a} - \frac{b_k}{b}\right) \ln{\left(\frac{z+\left(1+\sqrt{2}\hspace{0.1cm} \right)B}{z+\left(1-\sqrt{2}\hspace{0.1cm} \right)B} \right)} $

Note that in this equation, $a$, $b$, and $B$ are mixture parameters. In another notation, for example, $B=\frac{b_{mix}\hspace{0.1cm} P}{R \hspace{0.1cm}T}$ and $b_{mix}=\sum{y_i b_i}$.

The Redlich-Kwong Equation of State


Pressure-explicit form

$ P=\frac{RT}{v-b}-\frac{a}{\sqrt{T} \hspace{0.25cm}v \hspace{0.25cm}(v+b)} $

$ a=\frac{1}{9\sqrt[3]{2}-9} \frac{R^2 T_c^{2.5}}{P_c}=0.42748 \frac{R^2 T_c^{2.5}}{P_c} $

$ b=\frac{\sqrt[3]{2}-1}{3} \frac{R T_c}{P_c}=0.08664 \frac{R T_c}{P_c} $


$R=8.31446261815324 \frac{J}{mol\hspace{0.1cm} K}$

Represented in terms of compressibility factor

$ z=\frac{1}{1-\xi}-\frac{a}{b\hspace{0.05cm}R\hspace{0.05cm}T^{\frac{3}{2}} }\frac{\xi}{1+\xi} $

$\xi=\frac{bP}{RTz}$
Useful Relations

Difference of specific heat capacities

$C_P-C_V=-T\frac{\left( \frac{\partial v}{\partial T} \right)_P^2}{\left( \frac{\partial v}{\partial P} \right)_T} =-T\frac{\left( \frac{\partial P}{\partial T} \right)_v^2}{\left( \frac{\partial P}{\partial v} \right)_T}$

Note that the first equation is more useful as in many cases we have $P$ and $T$ as known values and $v$ is to be found.
Last modified: 01/03/2023
Number of unique visitors (since Jan 3rd, 2023): web counter

Please support my page's growth with a donation. Click here to DONATE (paypal and other methods)